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Abstract 
The purpose of this paper is to compare probability theory with possibility theory, and to use this comparison in 

comparing probability theory with fuzzy set theory. The best way of comparing probabilistic and possibilistic 

conceptualizations of uncertainty is to examine the two theories from a broader perspective. Such a perspective 

is offered by evidence theory, within which probability theory and possibility theory are recognized as special 

branches. While the various characteristic of possibility theory within the broader framework of evidence theory 

are expounded in this paper, we need to introduce their probabilistic counterparts to facilitate our discussion.  
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I. Introduction 
The aim of this paper is to discuss the differences 

and similarities between probability measures and 

possibilities measures. This paper thus establishes a 

new link between probability and possibility theories. 

These two theories have an important role in 

uncertainty. Uncertainty-based information was first 

conceived in terms of classical set theory and in 

terms of probability theory. The term information 

theory has almost invariably been used to a theory 

based upon the well known measure of probabilistic 

uncertainty established by [2]. Research on a broader 

conception of uncertainty-based information, 

liberated from the confines of classical set theory and 

probability theory, began in the early eighties. The 

name generalized information theory was coined for 

a theory based upon this broader conception. 

The ultimate goal of generalized information 

theory is to capture properties of uncertainty-based 

information formalized within any feasible 

mathematical framework. Although this goal has not 

been fully achieved as yet, substantial progress has 

been made in this direction. In addition to classical 

set theory and probability theory, uncertainty-based 

information is now well understood in fuzzy set 

theory, possibility theory and evidence theory. 

Firstly we introduce these three theories i.e. 

probability theory, evidence theory and possibility 

theory which is the part of fuzzy measure theory. In 

this section we discuss some basic terminologies 

which are used in probability theory and some 

axioms of probability distribution, which shows that 

the probability of the union is the sum of the 

probabilities of these events. In probability theory 

there are some limitations and disadvantage with 

probabilistic method. Evidence theory is also called 

Dempster-Shafer theory. The theory of evidence is 

based on two dual non-additive measures: Belief 

measure (Bel) and Plausibility measure (Pl). In 

possibility theory, the two measures of evidence 

theory, belief measure and plausibility measure 

becomes necessity measure(𝜋) and possibility 

measure(𝜂) respectively, which is define briefly in 

section 2. 

In section 3, we discuss some mathematical 

properties of probability theory and possibility 

theory. These basic properties help us to compare 

probability theory to possibility theory. Some of 

properties define the similarity between probability 

and possibility. In section 4, we define the 

differences between probability measure and 

possibility measure in fuzzy measure. At last we 

discuss some similarity between probability measure 

and possibility measure in fuzzy measure. 
 

II. Fuzzy Measure Theory 
In mathematics, fuzzy measure considers a 

number of special classes of measures, each of which 

is characterized by a special property. Some of the 

measures used in this theory are plausibility and 

belief measures, fuzzy set membership function and 

the classical probability measures. In the fuzzy 

measure theory, the conditions are precise, but the 

information about an element alone is insufficient to 

determine which special classes of measure should be 

used [8]. The central concept of fuzzy measure theory 

is the fuzzy measure which was introduced by 

Choquet in 1953 by [8] and independently defined by 

Sugeno in 1974 by [15] in the context of fuzzy 

integrals. 
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Definition: 

Given a universal set X and a non empty family 

ρ of subsets of X, a “fuzzy measure” on ⟨X, ρ⟩ is a 

function 𝗀: ρ → [0,1] that satisfies the following 

requirements by [10]: 

[𝗀1] Boundary requirements:  𝗀 ϕ =
0 and 𝗀 X = 1  

[𝗀2] Monotonicity: If A ⊆ B, then 𝗀 A ≤
𝗀 B  for all A, B ∈ ρ. 

[𝗀3] Continuity from below: For any increasing 

sequence A1 ⊂ A2 ⊂ ⋯ in ρ, 

if  Ai

∞

i=1

∈ ρ, then lim
i→∞

𝗀(Ai) = 𝗀   Ai

∞

i=1

  

[𝗀4] Continuity from above: For any decreasing 

sequence A1 ⊃ A2 ⊃ ⋯ in ρ, 

if  Ai

∞

i=1

∈ ρ, then lim
i→∞

𝗀 Ai = 𝗀   Ai

∞

i=1

  

The boundary requirements [𝗀1] state that the 

element in question definitely does not belong to the 

empty set and definitely does belong to the universal 

set. The empty set does not contain any element 

hence it cannot contain the element of our interest, 

either; the universal set contains all elements under 

consideration in each particular context; therefore it 

must contain our element as well. 

Requirement [𝗀2] states that the evidence of the 

membership of an element in a set must be at least as 

great as the evidence that the element belongs to any 

subset of that set. Indeed with some degree of 

certainty that the element belongs to a set, and then 

our degree of certainty that is belongs to a larger set 

containing the former set can be greater or equal, but 

it cannot be smaller. Requirements [𝗀3] and [𝗀4] are 

clearly applicable only to an infinite universal set. 

They can therefore be disregarded when the universal 

set is finite. Fuzzy measures are usually defined on 

families ρ that satisfy appropriate properties (rings, 

semirings, σ - algebras, etc.). In some cases, ρ 

consists of the full power set P(X) [10]. 

Fuzzy measure theory is of interest of its three 

special branches: probability theory, evidence theory 

and possibility theory. Although our principle interest 

is in possibility theory and its comparison with 

probability theory, evidence theory will allow us to 

examine and compare the two theories from a 

broader perspective. 

 

2.1 Probability Theory: 

Probability represents a unique encoding of 

incomplete information. The essential task of 

probability theory is to provide methods for 

translating incomplete information into this code. The 

code is unique because it provides a method, which 

satisfies the following set of properties for any 

system [13]. 

1. If a problem can be solved in more than one way, 

all ways must lead to the same answer. 

2. The question posed and the way the answer is 

found must be totally transparent. There must be 

no “laps of faith” required to understand how the 

answer followed from the given information’s. 

3. The methods of solution must not be “ad-hoc”. 

They must be general and admit to being used 

for any problem, not just a limited class of 

problems. Moreover the applications must be 

totally honest. For example, it is not proper for 

someone to present incomplete information, 

develop an answer and then prove that the 

answer is incorrect because in the light of 

additional information a different answer is 

obtained. 

4. The process should not introduce information 

that is not present in the original statement of the 

problem. 

 

2.2 Basic Terminologies Used in Probability 

Theory: 

(I) The Axioms of Probability: The language 

systems, contains a set of axioms that are used to 

constrain the probabilities assigned to events [13]. 

Four axioms of probability are as follows: 

1. All values of probabilities are between zero and 

one i.e. 0 ≤ P A ≤ 1      ∀ A. 
2. Probabilities of an event that are necessarily true 

have a value of one, and those that are 

necessarily false have a value of zero i.e. P(True) 

= 1 and P(False) = 0. 

3. The probability of a disjunction is given by: 

 P A ∪ B = P A + P B − P(A ∩ B) ∀ A, B 
4. A probability measure, “Pro” is required to 

satisfy the equation  

 Pro A ∪ B = Pro A + Pro(B) 

 ∀ A, B s. t. A ∩ B = ∅. 

This requirement is usually referred to as the 

“additivity axiom” of probability measures [9]. An 

important result of these axioms is calculating the 

negation of a probability of an event. i.e. 

 P A  = 1 − P A       ∀ A. 

 

(II) The Joint Probability Distribution: The 

joint probability distribution is a function that 

specifies a probability of certain state of the domain 

given the states of each variable in the domain. 

Suppose that our domain consists of three random 

variables or atomic events a1, a2, a3  [13].Then an 

example of the joint probability distribution of this 

domain where a1 = 1, a2 = 0, and  a3 = 1 would be 

P a1, a2
′, a3 =same value depending upon the 

values of different probabilities of a1, a2, and a3. The 

joint probability distribution will be one of the many 

distributions that can be calculated using a 

probabilistic reasoning system [7]. 
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(III) Conditional Probability and Bayes Rule: 
Suppose a rational agent begins to perceive data from 

its world, it stores this data as evidence. This 

evidence is used to calculate a posterior or 

conditional probability which will be more accurate 

than the probability of an atomic event without this 

evidence, known as a prior or unconditional 

probability [13]. 

 

Example: The reliability of a particular skin test for 

tuberculosis (TB) is as follows: 

⇒ If the subject has TB then the sensitivity of the 

test is 0.98. 

⇒ If the subject does not have TB then the 

specificity of the test is 0.99. 

From a large population, in which 2 in every 

10,000 people have TB, a person is selected at 

random and given the test, which comes back 

positive.  

 

What is the probability that the person actually 

has TB? 

Let’s define event A as “the person has TB” and 

event B as “the person tests positive for TB”. It is 

clear that the prior probability P A =
2

10,000
=

0.0002 and P A  = 1 − P A = 0.9998. 

The conditional probability P B A ,the 

probability that the person will test positive for TB 

given that the person has TB. This was given as 0.98. 

The other value we need P B A  , the probability that 

the person will test positive for TB given that the 

person does not have TB. Since a person who does 

not have TB will test negative 99% (given) of the 

time, he/she will test positive 1% of the time and 

therefore P B A  = 0.01. By Baye’s Rule as: 

P A B =
P A P B A 

P A P B A + P A  P B A  

=
0.0002 × 0.98

 0.0002 × 0.98 +  0.9998 × 0.01 
 

              = 0.0192  approx = 1.92% (approx) 

We might find this hard to believe, that fewer 

than 2% of people who test positive for TB using this 

test actually have the disease. Ever though the 

sensitivity and specificity of this test are both high, 

the extremely low incidence of TB in the population 

has a tremendous effect on the test’s positive 

predictive value, the population of people who test 

positive that actually have the disease. To see this, we 

might try answering the same question assuming that 

the incidence of TB in the population is 2 in 100 

instead of 2 in 10,000. 

 

(IV) Conditional Independence: When the result 

of one atomic event, A, does not affect the result of 

another atomic event, B, those two atomic events are 

known to be independent of each other and this helps 

to resolve the uncertainty [1]. This relationship has 

the following mathematical property: P A, B =
P A . P(B). Another mathematical implication is that: 

P A B = P A . Independence can be extended to 

explain irrelevant data in conditional relationship. 

 

2.3 Disadvantages with Probabilistic Method: 

Probabilities must be assigned even if no 

information is available and assigns an equal amount 

of probability to all such items. Probabilities require 

the consideration of all available evidence, not only 

from the rules currently under consideration [7]. 

Probabilistic methods always require prior 

probabilities which are very hard to found out 

apriority [9]. Probability may be inappropriate where 

as the future is not always similar to the past. In 

probabilistic method independence of evidences 

assumption often not valid and complex statements 

with conditional dependencies cannot be decomposed 

into independent parts. In this method relationship 

between hypothesis and evidence is reduced to a 

number [1]. Probability theory is an ideal tool for 

formalizing uncertainty in situations where class 

frequencies are known or where evidence is based on 

outcomes of a sufficiently long series of independent 

random experiments [13]. 

 

2.4 Evidence Theory: 

Dempster-Shafer theory (DST) is a mathematical 

theory of evidence. The seminal work on the subject 

is done by Shafer [14], which is an expansion of 

previous work done by Dempster [3]. In a finite 

discrete space, DST can be interpreted as a 

generalization of probability theory where 

probabilities are assigned to sets as opposed to 

mutually exclusive singletons. In traditional 

probability theory, evidence is associated with only 

one possible event. In DST, evidence can be 

associated with multiple possible events, i.e. sets of 

events. DST allows the direct representation of 

uncertainty. There are three important functions in 

DST by [3], [14]: (1) The basic probability 

assignment function (bpa or m), (2) The Belief 

function (Bel) and (3) The Plausibility function (Pl). 

The theory of evidence is based on two dual non-

additive measures: (2) and (3). 

 

(1) Basic Probability Assignment: Basic probability 

assignment does not refer to probability in the 

classical sense. The basic probability assignment, 

represented by m, defines a mapping of the power set 

to the interval between 0 and 1, s.t. p: ρ X → [0,1] 
satisfying the following properties: [7] 

(a) p ∅ = 0, and  b   p(A)A∈ρ(X) = 1 

The value of p(A) pertains only to the set A and 

makes no additional claim about any subset of A. 

Any further evidence on the subset of A would be 

represented by another basic probability assignment. 

The summation of the basic probability assignment of 
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all the subsets of the power set is 1. As such, the 

basic probability assignment cannot be equated with 

a classical probability in general [1]. 

 

(2) Belief Measure: Given a measurable space(X, ρ), 

a belief measure is a function Bel: ρ X → [0,1] 
satisfying the following properties: 

(a) Bel ∅ = 0, (b) Bel X = 1, and 

 c Bel X1 ∪ X2 ∪ … Xn 

≥  Bel Xi 

i

−  Bel Xi ∩ Xk 

i<𝑘

+ ⋯
+  −1 n+1Bel X1 ∩ X2 ∩ … Xn   

             (1) 
Due to the inequality (1), belief measures are 

called superadditive. When X is infinite, function Bel 

is also required to be continuous from above. For 

each Yϵρ X , Bel(Y) is defined as the degree of belief, 

which is based on available evidence [3], that a given 

element of X belongs to the set Y. The inequality (1) 

implies the monotonicity requirement [𝗀2] of fuzzy 

measure.  

Let X1 ⊆ X2  where X1 , X2 ∈ ρ X  and let X3 = X2 −
X1 . Then X1 ∪ X3 = X2  and X1 ∩ X3 = ∅. Applying 

now X1  and X3  for n = 2 to (1), we get 

Bel X1 ∪ X3 = Bel X2 ≥ Bel X1 + Bel X3 −
Bel X1 ∩ X3 . Since X1 ∩ X3 = ∅, and 

Bel ∅ = 0, we have  

Bel X1 ∪ X3 ≥ Bel X1 + Bel X3  

Let X1 = A and X2 = A  in (1) for n=2. Then we have, 

Bel A + Bel A  ≤ Bel(A ∪ A ) ≤ Bel(X) ≤ 1 

⇒ Bel A + Bel A  ≤ 1           (2) 

Inequality (2) is called the fundamental property of 

belief measures. 

 

(3) Plausibility Measure: Given a measurable 

space(X, ρ), a plausibility measure is a function 

Pl: ρ X → [0,1] satisfying the following properties: 

(a) Pl ∅ = 0,  (b) Pl X = 1, and 

 c Pl X1 ∩ X2 ∩ …∩ Xn ≤  Pl Xi i −
 Pl Xi ∪ Xk i<𝑘 + ⋯ …… . . + −1 n+1Pl(X1 ∪ X2 ∪
… ∪ Xn )             (3) 

Due to the inequality (2), plausibility measures 

are called subadditive. When X is infinite, function Pl 

is also required to be continuous from below [14]. 

Let X1 = A and X2 = A  in (3) for n=2. Then we have, 

Pl A + Pl A  − Pl A ∪ A  ≥ Pl A ∩ A    
⇒ Pl A + Pl A  − Pl(X) ≥ Pl(∅) 

⇒ Pl A + Pl A  ≥ 1                          (4) 

According to inequality (2) and (4) we say that each 

belief measure, Bel, is a plausibility measure, Pl, i.e. 

the relation between belief measure and plausibility 

measure is defined by [16] the following equations: 

Pl A = 1 − Bel A                 and                          (5) 

Bel A = 1 − Pl A              (6) 

 

 

2.5 Possibility Theory: 

Possibility theory is a mathematical theory for 

dealing with certain types of uncertainty and is an 

alternative to probability theory. Possibility theory is 

an uncertainty theory devoted to the handling of 

incomplete information. It is comparable to 

probability theory because it is based on set-

functions. Possibility theory has enabled a typology 

of fuzzy rules to be laid bare, distinguishing rules 

whose purpose is to propagate uncertainty through 

reasoning steps, from rules whose main purpose is 

similarity-based interpolation [4]. The name “Theory 

of Possibility” was coined by Zadeh [16], who was 

inspired by a paper by Gaines and Kohout [6]. In 

Zadeh's view, possibility distributions were meant to 

provide a graded semantics to natural language 

statements. Possibility theory was introduced to allow 

a reasoning to be carried out on imprecise or vague 

knowledge, making it possible to deal with 

uncertainties on this knowledge. Possibility is 

normally associated with some fuzziness, either in 

the background knowledge on which possibility is 

based, or in the set for which possibility is asserted 

[9]. 

Let S be a set of states of affairs (or descriptions 

thereof), or states for short. A possibility distribution 

is a mapping 𝜋 from S to a totally ordered scale L, 

with top 1 and bottom 0, such as the unit interval. 

The function 𝜋  represents the state of knowledge of 

an agent (about the actual state of affairs) 

distinguishing what is plausible from what is less 

plausible, what is the normal course of things from 

what is not, what is surprising from what is expected 

[12]. It represents a flexible restriction on what is the 

actual state with the following conventions (similar to 

probability, but opposite of Shackle's potential 

surprise scale): 

(1) 𝜋(s) = 0 means that state s is rejected as 

impossible; 

(2) 𝜋(s) = 1 means that state s is totally possible (= 

plausible). 

For example, imprecise information such as “X’s 

height is above 170cm” implies that any height h 

above 170 is possible any height equal to or below 

170 is impossible for him. This can be represented by 

a “possibility measure” defined on the height domain 

whose value is 0 if h < 170 and 1 if h ≥ 170 (0 = 

impossible and 1 = possible).when the predicate is 

vague like in X is tall, the possibility can be 

accommodate degrees, the largest the degree, the 

largest the possibility.  

For consonant body of evidence, the belief 

measure becomes necessity measure(η) and 

plausibility measure becomes possibility measure(π) 

[16]. 

Hence   

Bel A ∩ B = min Bel A , Bel B   
Becomes  η A ∩ B = min η A , η B   
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And Pl A ∪ B = max[Pl A , Pl B ] 
Becomes π A ∪ B = max[π A , π B ] 
And also π A = 1 − π A  ;  η A = 1 − η A   

  

3. Basic Mathematical Properties of Probability 

Theory and Possibility Theory: 
1. Probability Theory: It is based on measures of one 

type: Probability measure (P). 

Possibility Theory: It is based on measures of two 

types:  

(a) Possibility measure (𝜋),   (b) 

Necessity measure (𝜂). 

2. Probability Theory: Here body of evidence 

consists of singletons. 

Possibility Theory: Body of evidence consists of a 

family of nested subsets. 

3. Probability Theory: Probability measures holds 

additivity i.e.,  

 P A ∪ B = P A + P B − P(A ∩ B). 

Possibility Theory: Possibility measures and 

Necessity measures follow the max\min rules: 

 π A ∪ B =
max π A , π B         and          η A ∪ B =
min[η A , η B ]. 
4. Probability Theory: Unique representation of P by 

a Probability distribution function p: X → [0,1] 
via the formula  

P A =  p(x)

x∈A

 

Possibility Theory:  Unique representation of 𝜋 

by a Possibility distribution function π: X →
[0,1] via the formula  

π A = max
x∈A

   π(x) 

5.   Probability Theory:  It is normalized by 

 p(x)

x∈X

= 1 

 Possibility Theory:  It is normalized by 

max
x∈X

   π(x) = 1 

6.  Probability Theory:  Total ignorance: 

   p x =
1

 X 
  

 for all x ∈ X 

 Possibility Theory:  Total ignorance: 

  

 π x = 1                                       for all x ∈ X 

7.  Probability Theory:    P A + P A  =
1  

Possibility Theory:      π A + π A  ≥
1 

η A + η A  ≤ 1 

max π A , π A   = 1 

min η A , η A   = 0 
As obvious from their mathematical properties, 

possibility, necessity and probability measures do not 

overlap with one another except for one very special 

measure, which is characterized by only one focal 

element, a singleton [10]. The two distribution 

functions that represent probabilities and possibilities 

become equal for this measure: one element of the 

universal set is assigned the value of 1, with all other 

element being assigned a value of 0. This is clearly 

the only measure that represents perfect evidence. 

 

4. Difference Between Probability Theory and 

Possibility Theory: 

1.  The theory of possibility is analogous to, yet 

conceptually different from the theory of 

probability. Probability is fundamentally a 

measure of the frequency of occurrence of an 

event, while possibility is used to quantify the 

meaning of an event. 

2.  Value of each probability distribution are 

required to add to 1, while for possibility 

distributions the largest values are required to be 

1. 

3.  Probability theory is an ideal tool for formalizing 

uncertainty in situations where class frequencies 

are known or where evidence is based on 

outcomes of a sufficiently long series of 

independent random experiments. On the other 

hand possibility theory is ideal for formalizing 

incomplete information expressed in terms of 

fuzzy propositions. 

4.  Possibility measures replace the additivity axiom 

of probability with the weaker subadditivity 

condition. 

5.  Probabilistic bodies of evidence consist of 

singletons, while possibilistic bodies of evidence 

are families of nested set. 

6.  A difference between the two theories is in their 

expressions of total ignorance. In probability 

theory, total uncertainty is expressed by the 

uniform probability distribution on the universal 

set:p x =
1

 X 
 for all x ∈ X. In possibility theory, 

it is expressed in the same way as in evidence 

theory  π x = 1, for all x ∈ X. 

7.  Possibility measures degree of ease for a variable 

to be taken a value where as probability 

measures the likelihood for a variable to take a 

value. 

8.  Possibility theory is still less developed than 

their probabilistic counterparts, it is already well 

established that possibility theory provides a link 

between fuzzy sets and probability theory are 

connected with probability theory. 

 

5. Similarity Between Probability Theory and 

Possibility Theory: 
1.  When information regarding some phenomenon 

is given in both probabilistic and possibilistic 

terms, the two descriptions should be in some 

sense consistent. That is, given a probability 

measure (P) and a possibility measure  π  both 

define on ρ X , the two measures should satisfy 

some consistency condition. 
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2.  Possibility theory and probability theory are 

suitable for modelling certain type of uncertainty 

and suitable for modelling other types. 

3.  Notion of non-interactiveness on possibility 

theory is analogous to the notion of 

independence in probability theory. If two 

random variables x and y are independent, their 

joint probability distribution is the product of 

their individual distributions. Similarly if two 

linguistic variables are non-interactive, their joint 

probabilities are formed by combining their 

individual possibility distribution through a 

fuzzy conjunction operator. 

4.  Possibility theory may be interpreted in terms of 

interval-valued probabilities, provided that the 

normalization requirement is applied. Due to the 

nested structure of evidence, the intervals of 

estimated probabilities are not totally arbitrary. If 

π(A) < 1, then the estimated probabilities are in 

the interval  0, Pl(A) ; if Bel(A) > 0, then the 

estimated probabilities are in the interval 
 Bel A , 1 . Due to these properties, belief 

measures and plausibility measures may be 

interpreted as lower and upper probability 

estimates. 

There are multiple interpretations of probability 

theory and possibility theory. Viewing necessity and 

possibility measures as lower and upper probabilities 

opens a bridge between the two theories, which allow 

us to adjust some of the interpretations of probability 

theory to the interval-valued probabilities of 

possibilistic type. 

There are two basic approaches to 

possibility/probability transformations, which both 

respect a form of probability-possibility consistency. 

One, due to [7], [11] is based on a principle of 

information invariance, the other [5] is based on 

optimizing information content. Klir assumes that 

possibilistic and probabilistic information measures 

are commensurate. The choice between possibility 

and probability is then a mere matter of translation 

between languages “neither of which is weaker or 

stronger than the other” [9]. It suggest that entropy 

and imprecision capture the same facet of 

uncertainty, albeit in different guises. 

 

III. Concluding Remark 
The theoretical foundations of probability and 

possibility based methods were examined and 

compared in design for maximum safety. A major 

difference between probability and possibility is in 

the axioms for the union of disjoint events. The 

probability of the union is the sum of the probabilities 

of these events, whereas the possibility is equal to the 

largest possibility. 

Since both probabilistic and possibilistic 

methods provide estimates of uncertainty that 

depends on highly subjective selection of prior 

probability distributions or possibility distributions 

by designers, it may be desirable to find ways of 

providing decision- makers with measures of the 

degree of subjectivity in the final results. To the best 

of the author’s knowledge, there are no well 

established methods for doing so. 

Possibility can be less conservative than 

probability in risk assessment with many failure 

modes. In many reliability assessment problems, one 

can easily determine the most conservative 

possibilistic model that is consistent with the 

available information. On the other hand, it is 

difficult to choose the most conservative probabilistic 

model if little information is available. This is an 

advantage of possibility because in design of high 

consequence systems, for example nuclear power 

plants, designers prefer to err on the conservative 

side.  

If we have enough information about 

uncertainties and accurate predictive models, then 

probability is advantageous. On the other hand, when 

making design decisions under limited information or 

using erude predictive models it may be useful to 

consider both the probability and possibility of failure 

of a system. When maximizing safety for a given 

budget, the design with the lowest probability of 

failure can be more sensitive than its possibilistic 

counterparts to errors in the models of uncertainty or 

errors in the deterministic models for predicting the 

performance of a system. 
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